
DOI: 10.1007/s10910-006-9160-3
Journal of Mathematical Chemistry, Vol. 40, No. 4, November 2006 (© 2006)

On topological form in structures�

Michael J. Bucknum∗
Georgia College and State University, Department of Chemistry and Physics, CBX 82, Milledgeville,

GA 31061, USA
E-mail: mjbucknum@yahoo.com

Eduardo A. Castro
INIFTA, Suc.4, C.C. 16, La Plata 1900, Buenos Aires, Argentina

Received 21 May 2006; revised 22 June 2006

This paper begins with a review of the Euler relation for the polyhedra and presents
the corresponding Schläfli relation in n, the polygonality, and p, the connectivity of the
polyhedra. The use of ordered pairs as given by (n, p), the Schläfli symbols, to organize
the mapping of the polyhedra and its extension into the two dimensional (2D) and three
dimensional (3D) networks is described. The topological form index, represented by l, is
introduced and is defined as the ratio of the polygonality, n, to the connectivity, p, in a
structure, it is given by l = n/p. Next a discussion is given of establishing a conventional
metric of length in order to compare topological properties of the polyhedra and networks
in 2D and 3D. A fundamental structural metric is assumed for the polyhedra. The metric
for the polyhedra is, in turn, used to establish a metric for tilings in the Euclidean plane.
The metrics for the polyhedra and 2D plane are used to establish a metric for networks
in 3D. Once the metrics have been established, a conjecture is introduced, based upon the
metrics assumed, that the area of the elementary polygonal circuit in the polyhedra and 2D
and 3D networks is proportional to a function of the topological form index, l, for these
structures. Data of the form indexes and the corresponding elementary polygonal circuit
areas, for a selection of polyhedra and 2D and 3D networks is tabulated, and the results
of a least squares regression analysis of the data plotted in a Cartesian space are reported.
From the regression analysis it is seen that a quadratic in l, the form index, successfully
correlates with the corresponding elementary polygonal circuit area data of the polyhedra
and 2D and 3D networks. A brief discussion of the evident rigorousness of the Schläfli
indexes (n, p) over all the polyhedra and 2D and 3D networks, based upon the correlation
of the topological form index with elementary polygonal circuit area in these structures,
and the suggestion that an Euler-Schläfli relation for the 2D and 3D networks, is possible,
in terms of the Schläfli indexes, concludes the paper.
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1. Introduction

Euler’s relation between the number of vertices, V , edges, E , and faces, F ,
of convex polyhedra was developed in the middle of the 18th century and its dis-
covery marks the origin of the discipline of topology [1]. This relation is shown
in equation 1 below:

V − E + F = 2. (1)

From this equation it is said that the Euler characteristic for the sphere is
2. This simply, and elegantly, means that any division of a sphere into vertices,
edges and faces will have that combination so specified in equation 1. It happens
that the convex polyhedra, with all their inherent symmetry and external beauty,
are the idealized divisions of the sphere into the topology suggested first by
Euler in his 1758 paper [1].

During the 19th century, a paper due to Schläfli was published [2] in which
the identities shown in equations 2 and 3 were discovered:

nF = 2E . (2)

pV = 2E . (3)

Schläfli identified the polygonality, n, of convex polyhedra as the averaged
number of sides of the polygonal faces in an object derived from truncation of
the sphere. He determined the relation shown in 2 which states that the averaged
polygonality in such an object, n, multiplied by its number of faces, F , is equal
to twice its number of edges, E . Because each edge, E , is shared by two faces
(i.e. adjacent faces share a common edge) this relationship is rigorous.

Similarly in 3, we see that Schläfli identified a relationship between the con-
nectivity, p, of convex polyhedra and the number of vertices, V , and edges, E .
The connectivity, p, is identified as the averaged number of edges meeting at
each vertex of a polyhedron. Because each edge terminates at two vertices, one
can see that this Schläfli relation is rigorous. One speaks of averaged numbers for
n and p, because unless the polyhedron is regular (meaning all faces are identi-
cal polygons, as given by the 5 Platonic solids) there can be differing numbers of
edges, E , to each polygonal face, and/or differing numbers of edges, E , that meet
at each polygonal vertex in the given polyhedron. One can therefore identify the
semi-regular polyhedra, these are the Archimedean polyhedra (with more than 1
type of polygonal face) and Catalan polyhedra (with more than 1 type of polygo-
nal vertex) [3]. There are, in addition, innumerable irregular polyhedra, these are
polyhedra in which there is more than 1 type of polygonal face and more than 1
type of polygonal vertex. The irregular polyhedra have been reported as recently
the beginning of the 21st century.

Schläfli substituted equations 2 and 3 into the Euler relation, as is shown
in equation 4, to obtain a relation between V, E , and F , known as the
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primary topological indexes, and n and p, known as the secondary topological
indexes.

1
n

− 1
2

+ 1
p

= 1
E

. (4)

Among other reasons, this latter Schläfli relation is important from the per-
spective of the Schläfli symbols (n, p) that can be identified for any structure. All
of the convex polyhedra have rigorously determined values of n and p, just as
in the case of the primary topological indexes identified for them and given by
V, E , and F . The ordered pair thus formed, (n, p), the Schläfli symbol, repre-
sents a location in a Cartesian-like space, called a Schläfli space, in which the
polyhedral object can be mapped.

The beginnings of this topological mapping for the regular polyhedra have
been shown elsewhere [3]. As a Cartesian-like space, the map is outlined by
increasing connectivity, p, that runs as an axis from left to right in the map,
and by increasing polygonality, n, that runs as an axis from top to bottom in
the map. The 5 regular polyhedra are called the Platonic solids for their role as
Elements in Plato’s philosophical treatise known as the Timeas [4]. The Platonic
solid with the highest topology (as defined here by its position in the topology
map) is the tetrahedron (meaning it has 4 equivalent faces) with the Schläfli sym-
bol (3, 3). It marks the origin of this map. Similarly, lining the column under-
neath the tetrahedron, there is the cube (4, 3) and the pentagonal dodecahedron
(5, 3). And to the right of (3, 3), are the octahedron (3, 4), and the icosahedron
(3, 5).

One can immediately see the power of the Schläfli relation as an organiz-
ing principle in its usefulness as a mapping tool for determining the identity and
relative location of all of the various polyhedra. One could extend this map-
ping to include the semi-regular and irregular polyhedra as well. The Archime-
dean polyhedra have fractional polygonality n, while the Catalan polyhedra have
fractional connectivity p, and the irregular polyhedra have both fractional
polygonality and fractional connectivity in their Schläfli symbol (n, p).

During 1950’s A.F. Wells began his enumerative work on 2- and
3-dimensional (2D and 3D) networks and novel crystal structures [3]. He
labeled these novel networks with their corresponding Schläfli symbols (n, p)

to map and identify them. For while Wells did not determine a Schläfli-like
relation for 2D and 3D structural patterns (that is collections of vertices, edges,
and faces filling 2D and 3D space, and not constrained to the surface of
a sphere) he nonetheless discovered that both the polygonality, n, and the
connectivity, p, could be rigorously calculated within the corresponding units of
pattern of extended structures in both 2D and 3D [3]. He properly concluded
that the topology map for the polyhedra could be extended in the space of n
and p, the Schläfli space, by a simple augmentation of the ordered pairs of
numbers (n, p), to the right and downward from the Schläfli symbols for the
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polyhedra. From the original polyhedral topology map of Wells [3], an augmen-
tation of this map involved moving into frontier that included the various 2D
tessellations, like the regular 2D extended structures of the honeycomb net (6, 3),
the square net (4, 4), and also the closest packed net (3, 6), and on to include the
semi-regular and irregular tessellations of the Euclidean plane. Beyond the 2D
nets, the map extended further to the right and downward into the territory of
the regular, semi-regular, and irregular 3D networks. The extension of the topol-
ogy map, due to A.F. Wells, has been shown elsewhere [5]. Note that to the right
of the 2D networks, the frontier of the 3D nets, a given Schläfli symbol (n, p)

may represent more than one way of filling space with a network of the spec-
ified topology, so that one may have the potential for topological isomerism in
3D.

Early on 1950’s, work by Wells involved the enumeration of regular 2D and
3D networks, that is networks in which the polygonality of circuits in the net
is a uniform number, and the connectivity of the vertices in the networks is a
uniform number. These networks represent structures with some of the highest
topologies possible, and the work included such topologies as that represented
by the Schläfli symbol (7, 3). Particularly in this instance, according to Wells, he
was attempting to extend the topology map from the index (5, 3), the Platonic
solid called the pentagonal dodecahedron, to (6, 3), the 2D tessellation which
is known as the honeycomb net, onto (7, 3) which represents a continuation of
this sequence into 3D space. He eventually determined four distinct structures
that possessed the Schläfli symbol (7, 3) [3]. These 4 structures with the same
the Schläfli symbol (7, 3), thus constituted one of the first examples of topolog-
ical isomerism ever reported. He did other similar elegant work on 3D networks
of topology (8, 3), (9, 3), (10, 3), and (12, 3) [3]. Later on, as well as contin-
uing his study of regular networks, in addition Wells turned to networks whose
topology was lowered, these were the semi-regular and irregular 3D networks
[6].

The theme for the purpose of the present discussion, is to establish a rela-
tion between these topological Schläfli indexes, introduced and described above,
and the elementary polygonal circuit area in a structure, labeled as area(n, p).
The structures considered in this analysis include polyhedra, the 2D tessella-
tions and the 3D networks. The reasons for choosing elementary polygonal cir-
cuit area in order to establish a geometrical–topological correlation in structures
will be discussed more fully below in connection with the concept of a struc-
tural metric. It has been discovered, in the present work, that one can formu-
late a topological index derived from n and p that correlates with the elementary
polygonal circuit area of structures, to include the polyhedra and the 2D and
3D patterns. This new index, first described in 1997 [5], is defined as the ratio
of the polygonality to the connectivity in a given structure, l. This is shown in
equation 5:
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l = n

p
. (5)

Such a topological index of structures is a measure of what is termed the com-
pactness of a structure, as described below, it is hereafter called the Schläfli topo-
logical form index.

2. Identification of a geometrical standard

In order to establish a correlation between a geometrical structural param-
eter and a topological structural parameter, in patterns, it is necessary to define
a standard of length, called a metric, amongst which all structures in the same
class, i.e. in the class of the polyhedra or in the class of the 2D tessellations or
in the class of the 3D networks, possess the metric commonly. Establishing these
metrics of length is essential to identify property correlations across structures in
all classes and, of the utmost importance, it provides an internal consistency in
the correlation analysis. In this section, we will postulate a metric for the polyhe-
dra, called the Wells polyhedra metric [7], and from which the metric for the 2D
structures and the metric for the 3D structures are derived. Purposely, the deri-
vation of the metrics in 2D and 3D will be posited with the concomitant infer-
ence that they will so support the geometrical-topological correlation established
at the end of the paper.

Before moving on to the discussion of metrics, it is important to clarify why
the geometrical-topological structural correlation being described in this paper
involves the geometrical structural parameter of elementary polygonal circuit
area. In the course of this investigation, the problem arose as to how one could
establish the applicability of the Schläfli symbols to the 2D and 3D networks. As
has been discussed in the previous section, A.F. Wells found that he could calcu-
late the Schläfli indexes (n, p) for any 2D or 3D pattern, but the Schläfli relation
given in equation 4 in this paper was not rigorous for these ordered pairs (n, p)

associated with patterns in higher dimension than the polyhedra.
It is the purpose of the present communication to establish a different rela-

tion involving the Schläfli indexes and another property of structures, this being
the geometrical structural property of elementary polygonal circuit area, in order
to demonstrate that these topological indexes have applicability to the rigorous
analysis of mathematical properties of the 2D and 3D networks. This may have
importance with respect to the eventual formulation of an Euler–Schläfli relation
for the 2D and 3D structures. Beyond this, such a study as the present one has
as its goal to show the reader that topological indexes of structures have a bear-
ing on, and are related to, geometrical properties of structures.

In a separate sense, the choice of elementary polygonal circuit area as
a geometrical structural property used to establish a geometrical-topological
correlation, was made on the basis that 2D patterns have polygonal circuit
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area but, technically, no volume, and further that this structural property of
polygonal circuit area is shared with the polyhedra and the 3D structures. Also,
there are additional reasons, connected with the problem of establishing a suit-
able metric, for not employing geometrical structural volume in a correlation
with topological structural parameters. These will not be discussed here. At any
event, in the polyhedra and 2D and 3D patterns one can determine (even if
this involves an averaging process, as in the case of the semi-regular and irregu-
lar structures) the elementary polygonal circuit area, labeled as area (n, p), of a
structure.

Turning to the identification of a fundamental geometrical structural
parameter, a metric of length, in order to provide a basis for a geometri-
cal-topological correlation, the original work of Euler is considered [1]. Euler
envisioned the inscription of the polyhedra inside the sphere, in order to estab-
lish the relation shown in equation 1 in the previous section. In the interest of
establishing suitable metrics for the 2D and 3D patterns, we begin with the
assumption that the polyhedra are inscribed in the unit sphere. Therefore, from
the center of the sphere, and the corresponding polyhedra inscribed therein,
there exist radii of length unity, that point in all directions about the sphere
(polyhedra), including into the vertices of the various polyhedra. This particular
assumption is the basis for the calculation of the edge lengths and face areas of
the polyhedra, and the results of this analysis are later used to establish metrics
for the 2D and 3D patterns. The assumption that the polyhedra are inscribed in
the unit sphere, is therefore called the Wells fundamental polyhedra metric [7].

The analysis of edge lengths and face areas, to eventually be used in the
geometrical–topological correlation, begins with the inscription of the regular
tetrahedron (3, 3) in the unit sphere. It is an easy matter to calculate the cor-
responding edge of this polyhedron, one uses plane geometry and the fact that
the unit radii pointing into a pair of tetrahedral vertices form an obtuse isosce-
les triangle in which the obtuse angle is ideal at 109.47◦. From this one gets an
edge of 2

√
2/
√

3 and a corresponding face area given as 2/
√

3. Turning next to
the cube (4, 3), unit radii pointing into adjacent vertices form a right triangle
possessing a hypotenuse of length 2, comprised of the corresponding face diag-
onal, leading to an edge length of 2/

√
3, and a face area of 4/3. Turning to the

octahedron (3,4), unit radii pointing to an axial and an equatorial pair of verti-
ces define an isosceles right triangle that leads to an octahedral edge of

√
2 and

an octahedral face area of
√

3/2.
The two other regular (Platonic) polyhedra, the pentagonal dodecahe-

dron (5, 3) and the triangular icosahedron (3, 5) present esoteric geometri-
cal problems, and they are not essential to further establish the 2D and 3D
metrics, so their analysis will be left to a separate paper. From the preced-
ing paragraph, all the information required in order to establish the 2D and
3D metrics, and the corresponding conjecture that forms the basis of the
geometrical–topological correlation proposed later in this paper, is available,
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upon positing a couple further assumptions. One should bear in mind that
the metric for the polyhedra is provided through the assumption that they are
inscribed in the unit sphere. This leads to different edge lengths and different
face areas in each of the polyhedra, however they share their inscription on the
unit sphere, which is the metric of length for them. From this analysis, it is
clear that they must, in fact, have different face areas, and the following rela-
tions hold: area(5, 3) > area(4, 3) > area(3, 3) > area(3, 4) > area(3, 5). These
latter relations are a consequence of the equation between the form index, l, and
the elementary polygonal circuit area, symbolized by area(n, p), which will be
proposed and developed later in the paper.

To identify the metric for the 2D tessellations, one looks to the Schläfli
indexes in 2D and in the polyhedra to see if any structures between the 2 clas-
ses possess identical form indexes, l. For if corresponding structures between the
polyhedral class and the class of 2D tessellations possess the same topological
form index, l, they must possess the same elementary polygonal circuit area,
area(n, p). That this must be so, is based upon the requirement of providing
internal consistency with the geometrical-topological relation assumed to hold
for structures in the development of this paper. Such an assumption as this one
supports the latter conjecture and is thereby consistent with it. Such a relation-
ship as this, called the Wells structural correspondence principle [7], upon which
the identity of the metric in 2D structures is based, represents a 2nd assump-
tion introduced in this paper. Its converse would be simply inconsistent with the
geometrical–topological conjecture introduced later in the paper. The square net
(4, 4) has a form index of unity, which is the same as the form index in the tet-
rahedron (3, 3). The regular square net (4, 4) and the tetrahedron (3, 3) have
been illustrated elsewhere [3]. Therefore, the 2D metric is established as the cor-
responding edge length of the square face of the square net, which has the same
face area as the tetrahedron inscribed in the unit sphere. As a consequence the
following relation, shown in equation 6, holds:

area(3, 3) = area(4, 4) = 2/
√

3 (6)

and the corresponding 2D metric is just the edge of the square in (4, 4), or√
2/

√
3.

To get the edge metric in 3D, we turn to the related morphologies of the
cube (4, 3), the square net (4, 4), and the primitive cubic net (4, 6), these have
been discussed and illustrated elsewhere [3]. It is a 3rd, and final, assumption,
introduced in this paper, that structures of related morphologies in different
structural classes have face areas that are proportional. This is called the Wells
morphological principle [7]. The cube, with the Schläfli symbol (4, 3), the square
net (4, 4), and the primitive cubic net (rocksalt structure-type) (4, 6), all share
perfectly square faces as a common morphological theme in their structures.
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Therefore on the basis of the morphological principle, we can write the following
proportionality expression down:

area(4,3)

area(4,4)

= area(4,4)

area(4,6)

. (7)

By substitution the unknown in 7, area(4,6), can be solved for as is shown in 8.

area(4,6) = area(4,4)

(
area(4,4)

area(4,3)

)
= unity. (8)

It is therefore established in this scheme, developed out of the fundamen-
tal assumptions of inscription of the polyhedra on the unit sphere, known here-
after as the Wells polyhedra metric, and the Wells structural correspondence
principle described above, and finally the Wells morphological principle, just
introduced here, that the metric for all of the 3D networks is unit edge length.
This is derived from the fact that the primitive cubic net (rocksalt structure-type)
(4, 6) has unit face area and therefore unity for its edge length. Therefore, all
the edges of all of the circuits in the 3D nets share edge length unity for the
purposes of providing a geometrical-topological analysis of structures that is
internally consistent.

3. Consequences of the metrics

A representative sampling of 12 structures has been analyzed topologically
by identifying the ordered pair (n, p), the Schläfli symbol, and in terms of the
elementary polygonal face areas of the structures, symbolized as area(n, p), for
use in establishing a geometrical-topological correlation. The set of 12 structures
includes the 3 regular polyhedra discussed above, the 3 regular 2D tessellations,
three regular 3D nets, 1 Archimedean 3D net, 1 Catalan 3D net and 1 irreg-
ular (Wellsean) [5] 3D net. This sampling provides a broad base of potential
topological varieties of structure from which to determine if a correlation exists
between the topological form index, l, of equation 5, and the corresponding
elementary polygonal circuit area, labeled area(n, p).

Table 1 provides a compilation of the data for these 12 structures, note
that the metric for the polyhedra is inscription on the unit sphere, the resulting

edge metric for the 2D tessellations is just
√

2/
√

3, by application of the Wells
structural correspondence principle, and the edge metric of the 3D networks is
therefore just unity, by application of the Wells morphological principle. In table
1, the ThSi2 structure-type labeled by the Schläfli symbol (10, 3) [8], the diamond
structure-type labeled as (6, 4) [9] and the (primitive cubic net) rocksalt struc-
ture-type labeled as (4, 6) [3] are the regular structures, and they possess ideal
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Table 1
Geometrical-topological data for 12 structures.

name (n, p) l = n/p Area(n, p)

CCP network (3, 6) 1/2 1/2
Primitive cubic (4, 6) 2/3 1
Octahedron (3, 4) 3/4

√
3/2

Tetrahedron (3, 3) 1 2/
√

3
Square net (4, 4) 1 2/

√
3

Cube (4, 3) 11/3 11/3

Diamond (6, 4) 11/2
√

2/3 · π

Cooperite (PtS) (62/5, 4) 13/5 2
√

2π/3
Honeycomb net (6, 3) 2 3

Glitter (7, 31/3) 2π/3
√

2/
√

3 · π

Waserite (Pt3O4) (8, (2/5)e · π) 21/3
√

2·e
ThSi2 (10, 3) 31/3 7

√
3/2

bond angles. The Cooperite structure-type labeled as (62/5, 4) [10] is Archime-
dean, and is assumed to have ideal tetrahedral angles and distorted square pla-
nar angles in the calculation of its polygonal circuit area. The Waserite struc-
ture-type labeled as (8,3.4285) [11] is Catalan and has ideal bond angles, and the
glitter structure-type with the Schläfli index (7, 31/3) [5] is topologically irregular
and has ideal tetrahedral angles and distorted trigonal planar angles assumed in
the calculation of its polygonal circuit area.

One can see immediately that the form indexes, l, and the polygonal cir-
cuit areas, called area(n, p), are all expressible in closed form as factors of whole
numbers, fractions, square roots of simple integers and the mathematical con-
stants π and e. The honeycomb network (6, 3), the structure of the graphene

sheet, with an edge length of
√

2/
√

3, has a hexagonal face area of exactly 3.
The diamond structure-type given by (6, 4) and illustrated elsewhere [9], with
unity edge length and tetrahedral bond angles, has an elementary polygonal face
area of exactly

√
2/3 · π . The Waserite structure-type given by (8, 3.4285) and

illustrated and discussed previously [11], a Catalan network in 3D, has octag-
onal elementary polygonal circuits in its structure which have exactly the face
area of

√
2 · e when the network possesses unity edge length. Finally, the glit-

ter structure-type with Schläfli index (7, 31/3), a topologically irregular network
illustrated elsewhere [5], has a form index, l, of 2 ·π/3, and an elementary polyg-
onal circuit area (weighted average of 6-gon and 8-gon areas, which occur in a
1-to-1 ratio in glitter) consisting of a composite factor that is the edge metric
determined for the 2D tesselations, and the mathematical constant π , it is given

as
√

2/
√

3 · π .
The existence of closed form numbers, and especially the occurrence of the

mathematical constants π and e in the computation of some of the polygonal
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circuit areas in these structures, is mysterious. Such apparent coincidences are
herein termed Wells coincidences [7]. The Wells coincidences suggest that the
polygonal circuit area of the chair hexagons in the diamond lattice [9], for
instance, is just a scaling of π . They suggest that the area of the 8-sided circuitry
in the real Waserite phase [11], Pt3O4, is just a scaling of e. The Wells coinci-
dences, therefore, suggest that the structure of crystalline matter is an approxi-
mation to Platonic archetypes.

Indeed, it would seem that all the polyhedra, 2D tessellations and 3D net-
works, perhaps numbering in 1000’s in terms of those observed as pure forms in
models of various polyhedra and 2D and 3D structural-types [3], have an eter-
nal, separate existence as Platonic archetypes. The diamond structural-type exists
in a perfect form as a Platonic archetype, in which its chair substructures pos-
sess unity edge length and have a geometrical area exactly given by

√
2/3 ·π , for

example. It must not be overlooked in this context that with the 3 assumptions
posited here, and subsequent derivation of the metrics for the polyhedra and the
2D and 3D networks, respectively, provided in this paper, together with the stan-
dard crystallographic description of structures in terms of the space group sym-
metry and the Wyckoff positions of the vertices, and through the use of elemen-
tary plane geometry, one can provide a geometric construction of the mathemat-
ical constants π and e that complement the innumerable series and product rep-
resentations of these ubiquitous numbers.

4. The wells conjecture and geometrical-topological correlation

Data from table 1 has been mapped to a graph in which the topological
form index, l, is plotted along the horizontal axis, and the elementary polygo-
nal circuit area is plotted along the vertical axis, for the set of 12 representa-
tive structures described above. The empirical plot is shown completely below in
figure 1. The data, consisting of the geometrical-topological information on the
12 structures given in the previous section, was fit reasonably well to a quadratic
function in l. Least squares regression analysis of the data showed a reliability
factor of 0.9764 (a perfect correlation has a reliability factor of 1.000).

The geometrical-topological correlation equation for the 12 structures in
the analysis is shown below:

area(n, p) = A.l2 + B.l + C. (9)

The parameters in equation 9 are given as A = 0.152, B = 1.401, and C = -
0.265, these parameters will shift slightly as more geometrical–topological data
for the polyhedra, 2D tessellations and 3D networks is obtained and plotted.
It is not clear to the authors whether the assumptions introduced earlier in the
paper have biased the data towards exhibiting such a strong correlation as is evi-
denced by the dataset. Also, it is possible, under the assumptions introduced ear-
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Figure 1. Regression fit of the data in table 1 representing the elementary polygonal circuit area,
area(n, p), versus the topological form, 1, for the 12 structures.

lier in the paper, to calculate the parameters in equation 9 from corresponding
sets of three simultaneous equations, and this direction will be looked into in a
separate paper.

The presence of the very strong correlation between the topological form
index, l, for structures and their elementary polygonal circuit area, area(n, p),
suggests a mathematical conjecture which is called the Wells conjecture [7]. It is
stated below:

The elementary polygonal circuit area of a structure, be it a polyhedron, a 2D tessellation or a 3D net-
work, under a suitable metric, is proportional to a function of the topological form index l, which is the
ratio of the structure’s polygonality, n, to the structure’s connectivity, p.

There is no proof of the Wells conjecture presently. It appears that such a proof,
if one exists, will be very tenuous and difficult to elucidate, as the correlation
described above is only approximate.

The presence of this strong geometrical–topological correlation is quite sur-
prising in that one would not have expected topological parameters, like n and p,
which are pure numbers, to be related to a geometrical property of a given struc-
ture, like elementary polygonal circuit area. Indeed, the elementary polygonal cir-
cuit area of a given structure would seem to have a purely empirical value for
a given arbitrary network. This empirical correlation is also fundamental from
the point of view of the Schläfli symbols (n, p) as it shows there is a degree of
mathematical rigor, evidenced by the strong reliability index of the functional fit
of the data, in the Schläfli symbols for the 2D and 3D structures as well as the
polyhedra. In this instance we recall that the polyhedra are governed by the Eul-
er–Schläfli relations shown as equations 1 and 4 in this paper. This latter result
suggests it may be possible to formulate an Euler–Schläfli relation, using n and
p in some functional form, to predict the number of edges occurring in the units
of pattern of 2D and 3D structures.
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5. Conclusions

In conclusion, we state a note on compactness and the computational
scheme for obtaining the topological indexes of arbitrary networks. Earlier it was
thought by the authors that the topological form index, l, was a measure of the
density of the network. Density is a measure of the number of vertices in a met-
ric of volume of a structure. At this juncture it is not clear that l correlates with
density, in fact empirical evidence from hexagonite and the expanded hexagonites
[12] suggests strongly that l is not a measure of density. It is suggested here that
the term compactness be used with reference to l, compactness is a measure of
how tightly connected together (the degree of tautness) the circuitry in a net is
held. It is a measure of the compactness of area which is occupied by matter in
the structure. Low l correlates with low elementary polygonal circuit area and
high compactness, and vice versa.

It is important to point out the significance of equation 9 in terms of the
space of all possible networks [3]. Equation 9 represents a set of points through
the space of all possible networks (all potential values of the parameter l = n/p).
It thus identifies those networks with a given set of coordinates in the space (l,
area(n, p)) that are potentially realizable in Euclidean space as actual structures.
One could propose a network with a given value of (n, p), its associated Schläfli
symbol, in which the value of the ordered pair (n, p) for an arbitrary network
can be systematically derived from the network’s corresponding Wells point sym-
bol (which itself is a straightforward, systematic coding of the topology of a
given network from 1st principles of its topology) by a procedure described pre-
viously by the authors [13]. From the associated topological symbol (n, p) com-
puted in this way, one can use equations 5 and equation 9 in this paper, to cal-
culate the corresponding values of such a structure given by the topological form
index, l, and the area of the elementary polygonal circuit, area(n, p), respectively.

By plotting the coordinates in this manner as given for example by figure
1 for the set of 12 structures, one could therefore locate that point in the space
represented by the graph of equation 9. If in fact such a point doesn’t fall in
the proximity of the curve given by equation 9, then the proposed network will
probably not be able to be realized in practice in the realm of crystallographic
structure-types due to various complicated issues such as residual angle strain or
length strain implied in the hypothetical network. Therefore equation 9 repre-
sents all potential crystal structures that may be realized in model building (in
the spirit of Wells) or in actual crystallography and is thus a predictive tool for
the elucidation of further structures in Euclidean space and their geometrical
and topological properties.
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